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Introduction

Electric power transmission systems are a key
infrastructure and blackouts of these systems have major direct
and indirect consequences on the economy and national
security.  In particular, electric power blackouts have cascading
effects on other vital infrastructures. While it is useful to
analyze the detailed causes of individual blackouts, in this
paper we focus on the intrinsic dynamics of series of blackouts
and how this complex system dynamics impacts the assessment
and mitigation of blackout risk. Indeed, the mitigation of
failures in complex systems needs to be approached with care.

To motivate our work we consider the statistics of series
of blackouts. The North American Electrical Reliability
Council (NERC) has a documented list summarizing major
blackouts of the North American power transmission system
from 1984 to 1998 [NERC].  One might expect a probability
distribution of blackout sizes to fall off exponentially (as, for
example, in a Weibull distribution). However, analyses of the
NERC data [Carreras00, Carreras01a, Chen01, CarrerasPES]
show that the probability distribution of the blackout sizes does
not decrease exponentially with the size of the blackout, but
rather has a power law tail.  For example, load shed is one
measure of blackout size and Figure 1 plots on a log-log scale
the empirical probability distribution of load shed in the North
American blackouts.   The fall-off with blackout size is close to
a power dependence with an exponent of about -1.1. (An
exponent of -1 would imply that doubling the blackout size
only halves the probability.) Thus the NERC data suggests that
large blackouts are much more likely than might be expected.

The NERC blackout data seems to be the best available
but the statistics have limited resolution since the data is limited
to only 15 years.  Thus the NERC data suggests rather than
proves the existence of the power tails. Modeling and
simulation of the complex system dynamics is indicated. As
described below, progress has been made in modeling the
overall forces shaping the dynamics of series of blackouts.
Simulations on artificial power networks using the OPA model
[Dobson01, Carreras01b, Carreras02] can yield power tails that
are consistent with the NERC data as shown in Figure 1.
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Figure 1: Blackout probability distribution vs. blackout size.

The presence of power tails has a profound effect on risk
analysis for larger blackouts and the main purpose of this paper
is to outline some of these effects and suggest ideas towards
quantifying and mitigating the risks of larger blackouts from a
complex systems perspective. Indeed, power laws are a
characteristic property of complex system dynamics.

Blackout risk analysis and power tails

To evaluate the risk of a blackout, we need to know both
the frequency of the blackout and its costs.  It is difficult to
determine blackout costs and there are several approaches to
estimate these costs, including customer surveys, indirect
analytic methods and estimates for particular blackouts
[Billinton96]. The estimated direct costs to electricity
consumers vary by sector and increase with both the amount of
power interrupted and the duration of the blackout.
[Billinton87] defines an interrupted energy assessment rate
IEAR in $/kWh that is used as a factor multiplying the
unserved energy to estimate the blackout cost.  That is, for a
blackout with size measured by unserved energy S,

direct costs = (IEAR) S   $  (1)

There are substantial nonlinearities and dependencies not
accounted for in (1) [Billinton96, Caves89, Kariuki96], but



expressing the direct costs as a multiple of unserved energy is a
commonly used crude approximation.  However, studies of
individual large blackouts suggest that the indirect costs of
large blackouts, such as those resulting from social disorder, are
much higher than the direct costs [Billinton96; p.12,
Corwin78].  Also, the increasing and complicated dependencies
of other infrastructures on electrical energy tend to increase the
costs of all blackouts [Rinaldi01, NERC01].

Let the frequency of a blackout with unserved energy S be
F(S) and the cost of the blackout be C(S). The risk of a
blackout is the product of blackout frequency and cost:

risk  = F(S) C(S)

The NERC data indicates a power law scaling of blackout
frequency with blackout unserved energy as

F(S)  ~  Sα

where α ranges from -0.6 to -1.9 (see Appendix 1 for a more
detailed model). If we take α = -1.2, and only account for the
direct costs in C(S) according to (1),  then

risk  ~  S-0.2

This indicates a moderate decrease in risk as blackout size
increases.  However, if we also account for the indirect costs of
large blackouts, we expect much increased costs for larger
blackouts relative to smaller blackouts. Then we can conclude
that, although large blackouts are rarer than small blackouts, the
risk of large blackouts is at least as great as the risk of small
blackouts.

In contrast, consider the same risk calculation if the
blackout frequency decreases exponentially with size so that

F(S) = A-S

If we account for direct costs only, then

risk  ~ S A-S

and risk peaks for blackouts of some intermediate size and
decreases  exponentially for larger blackouts.  Then, unless the
peak risk occurs for blackouts comparable to the network size,
we expect the risk of larger blackouts to be much smaller than
the peak risk.  It is plausible that this conclusion holds even if
the indirect blackout costs are accounted for.

There is some uncertainty in assessing blackout costs, and
especially the costs of large blackouts. However, the analysis
above suggests that, when all the costs are considered, power
tails in the blackout size frequency distribution can cause the
risk of large blackouts to exceed the risk of the more frequent
small blackouts. This is strong motivation for investigating both
the cascading processes that typically occur in large blackouts
and the global dynamics of series of blackouts that can cause
power tails.

We now put the issue of power tails in context by
discussing other aspects of blackout frequency that impact risk.
The power tails are of course limited in extent in a practical
power system by a finite cutoff near system size corresponding
to the largest possible blackout.  More importantly, the
frequency of smaller blackouts and hence the shape of the
frequency distribution away from the tail impacts the risk. Also
significant is the absolute frequency of blackouts.  When we
consider the effect of mitigation on blackout risk, we need to
consider changes in both the absolute frequency and the shape
of the blackout frequency distribution.

Mitigating failures in complex systems

Large disruptions can be intrinsic to the global system
dynamics as is observed in systems displaying Self-Organized
Criticality (SOC) [Bak87, Drossel92, Bak96, Jensen98]. A
SOC system is one in which the nonlinear dynamics in the
presence of perturbations organizes the overall average system
state near to a critical state that is marginal to large disruptions.
These systems are characterized by a spectrum of spatial and
temporal scales of the disruption that exist in remarkably
similar forms in a wide variety of different physical systems.

Systems that operate near criticality have power tails: the
frequency of large disruptions decreases as a power function of
the disruption size.  This is in contrast to Gaussian systems or
failures following a Weibull distribution in which the frequency
decays exponentially with disruption size.  Therefore, the
application of traditional risk evaluation methods to such
systems can underestimate the risk of large disruptions.

The success of mitigation efforts in SOC systems is
strongly influenced by the dynamics of the system.  One can
understand SOC dynamics as including opposing forces that
drive the system to a “dynamic equilibrium” near criticality in
which disruptions of all sizes occur (see [Carreras00] for an
explanation in a power systems context).  Power tails are a
characteristic feature of this dynamic equilibrium. Unless the
mitigation efforts alter the self-organization forces driving the
system, the system will be pushed to criticality. To alter those
forces with mitigation efforts may be quite difficult because the
forces are an intrinsic part of our society. Then the mitigation
efforts can move the system to a new dynamic equilibrium
while remaining near criticality and preserving the power tails.
Thus, while the absolute frequency of disruptions of all sizes
may be reduced, the underlying forces can still cause the
relative frequency of large disruptions to small disruptions to
remain the same.

Moreover, in some cases, efforts to mitigate small
disruptions can even increase the frequency of large
disruptions. This occurs because the large and small disruptions
are not independent but are strongly coupled by the dynamics.
Before discussing this in the more complicated case of power
systems, we will illustrate this phenomenon with a forest fire
model [Drossel92].

The forest fire model has trees that grow with a certain
probability, lightning which strikes (and therefore lights fires)



with a certain probability and fires that spread to neighboring
trees (if there are any) also with a given probability.  The
opposing forces in the forest are tree growth and fires, which
act to increase and decrease the density of trees respectively.
The forest settles to a dynamic equilibrium with a characteristic
average density of trees. The rich dynamics of this model
system has been extensively studied [Drossel92].

In our version of the forest fire model there are two types
of forests.  The first type is an uncontrolled forest in which the
fires are allowed to burn themselves out naturally. The second
type of forest has an efficient fire-fighting brigade that can
extinguish small fires with a high probability. At first this
appears to be a good thing; after all, we want to decrease
damaging fires. However, in the longer run the effect of the fire
fighting is to increase the density of flammable material (trees).
Therefore when one fire is missed or a few start at once (from
multiple lightning strikes), the fire brigade is overwhelmed and
a major conflagration results. (This seems to be the cause of the
large fires in the southeastern United States in 2001.)  The
enhanced probability of large fires can be seen in Figure 2 in
which the frequency distribution of fire sizes is plotted for the
two different situations.  In the case where the small fires are
efficiently extinguished, the large fire tail of the distribution is
significantly increased over the case with no mitigation.  This
type of behavior is typical because in a complex system, there
is a strong nonlinear coupling between the effect of mitigation
and the frequency of the occurrence. Therefore even when
mitigation is effective and eliminates the class of disruptions
that it was designed for, it can have unexpected effects such as
an increase in the frequency of other disruptions. As a result,
the overall risk may be worse than the case with no mitigation.
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Figure 2: Frequency of forest fire sizes with and without fire
fighting.

Mitigating blackouts in power transmission systems

To study the dynamics of series of blackouts, we
developed the ORNL-PSerc-Alaska (OPA) model [Dobson01,
Carreras01b] that is described in more detail in Appendix 2.
The OPA model shows how the slow opposing forces of load
growth and network upgrades in response to blackouts can self
organize the power system to dynamic equilibrium.  Cascading
blackouts are modeled by overloads and outages of lines
determined in the context of LP dispatch of a DC load flow
model. This model shows dynamical behaviors characteristic of
complex systems and has a variety of transition points as power
demand is increased [Dobson02,CarrerasCH].  The OPA model
allows us to test some of the general complex systems ideas
discussed above in the context of power transmission systems.

In the OPA model, overloaded transmission lines outage
with a certain probability. To experiment with possible
mitigation effects, we consider two types of mitigation:

1) Reducing the probability that an overloaded line outages.
This strengthens the transmission lines.  For example, this
could roughly represent the effect of increased emergency
ratings so that an overloaded line would be more likely to be
able to operate while the overload was resolved by the
operators. For our calculations we decreased the probability
of an overloaded line suffering an outage by a factor of 15.

2) Requiring a certain minimum number of transmission lines to
overload before any line outages can occur.  This could
represent operator actions that can effectively resolve
overloads in a few lines, but are less effective for overloads
in many lines. Our calculations used 30 for the minimum
number of lines.
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Figure 3: Effect of mitigation on the frequency distribution of
number of line outages in blackouts.



We used the OPA model on a 190 node tree network to
evaluate these types of mitigation.  Figure 3 plots the logarithm
of the number of blackouts as a function of the number of line
outages for a time period of 80000 days in steady state. The
logarithmic vertical scale emphasizes the rarer large blackouts,
but this is appropriate given the risk analysis presented above.
We can see that with no mitigation, there are blackouts with
line outages ranging from zero to 43. When we decrease the
line outage probability, blackouts with more than 27 line
outages are eliminated. However, the total number of blackouts
has increased by 9%.  In the second case, all blackouts with less
than 30 line outages have been eliminated, but we have a large
increase in blackouts with more than 30 line outages.

In Figure 4, we have plotted the same three cases showing the
distribution of load shed. Since large power shed is associated
with a large number of line outages, Figures 3 and 4 give
similar results. These results are broadly similar to the forest
fire results described in the previous section.

Although a detailed risk analysis along the lines suggested in
the second section is needed to properly evaluate the good and
bad effects of these mitigation measures on blackout risk, it is
clear that both these mitigation measures have bad effects that
could outweigh their good effects.  Naive application of
apparently sensible mitigation measures could be costly.
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Figure 4: Effect of mitigation on the frequency distribution of
fractional load shed in blackouts.

The preceding results are only meant to indicate the
difficulty of identifying effective mitigation measures in a
power transmission system exhibiting complex system
dynamics and some of the non-intuitive consequences that can
be observed. Possibly the simplest mitigation approach is the
reduction of the overall number of blackouts. In the OPA

model, this can be done both by increasing the generator
capacity margin and by increasing the rate of improving the
transmission grid.  We find that the frequency of blackouts
decreases as the capacity margin increases (Figure 5).
However, this only happens when this margin is greater than
the standard deviation of the load demand fluctuations. When
they are comparable, there are no simple mitigation measures
that are effective in reducing the blackout frequency.  Also note
the increase in mean blackout size as blackout frequency
decreases in Figure 5.  The cost of these measures is likely to
be high because they imply constant investments in both
generation and transmission. Such investments may not be
guaranteed in a deregulated open electricity market. When
assessing the change in total risk caused by mitigation efforts,
both the frequency of events of various sizes and their costs
must be accounted for.
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Figure 5: Blackout frequency and mean size as a function of
generator capacity margin.

Conclusion

Recent analyses of 15 years of blackout data from NERC
have suggested that the frequency distribution of blackout sizes
has a power tail.  This power tail is consistent with the North
American electric power transmission system operating as a
complex system near criticality.  The OPA model seeks to
capture the global dynamics of series of blackouts and some
OPA simulations have also shown near critical behavior and
power tails that are similar to those in the NERC data.

Although there are some uncertainties in assessing
blackout costs and especially the indirect costs, we argue that
the presence of power tails has profound impact on blackout
risk.  Although larger blackouts are less frequent than smaller
blackouts, the combination of the costs of large blackouts and
power tails greatly increase the risk of the larger blackouts and
it is plausible that the risk of large blackouts exceeds the risk of
the smaller blackouts. The power tails also imply that



traditional probabilistic risk approaches that predict
exponentially decaying tails are not applicable.  Although the
global dynamics of large blackouts involving complicated
series of cascading rare events are challenging to study, our risk
analysis implies that they merit research and mitigation efforts
on the basis of their risk to society.

Complex system dynamics in the power transmission
system also has important implications for mitigation efforts to
reduce the risk of blackouts.  As expected from studies of
general self-organized critical systems, the OPA model shows
that apparently sensible efforts to reduce the risk of smaller
blackouts can sometimes increase the risk of large blackouts.
This is due to the nonlinear interdependence of blackouts of
different sizes caused by the dynamics.  The possibility of an
overall adverse effect on risk from apparently sensible
mitigation efforts shows the importance of accounting for
complex system dynamics when devising mitigation schemes.

Although in this paper we explore risk analysis and
mitigation for electric power transmission systems, our
complex system approach may find application to other large
networked infrastructures, or to the extended, interdependent
infrastructures of which electric power is an important part.

Our complex system approach, which implies
interdependence between large and small blackouts, should be
contrasted with an approach in which large and small blackouts
occur independently as uncorrelated events.  The difference
between the two approaches cannot be deduced from a
frequency distribution of blackout sizes (for these could be the
same in both approaches) but from assumptions about the
dynamics governing the system that produce these statistics.

The present version of the OPA model includes very
simple representations of the parts of the power transmission
system, but can nevertheless as a combined model yield
complicated complex system behaviors. We intend to improve
the modeling and understanding of the dynamics so that
effective blackout mitigation measures can be devised and
assessed from a complex systems perspective.
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Appendix 1

Using the same NERC data as in [CarrerasPES], we assume the
following form for the PDF of blackout size with respect to
unserved energy S:

P S
ae

S S

S S
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− 0

1 1
α     (A1-1)

The values of S0 and S1 represent the finite-size cutoff. Fitting
the functional form (A1-1) to the NERC data y i e l d s
α = ±1 23 0 64. .  (see Figure 6).
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Figure 6: Blackout size probability distribution with size
measured by MWh unserved.

Appendix 2: The OPA model.

The OPA model [Dobson01, Carreras01b] represents the
transmission system as a network of nodes (buses). The nodes
are either loads (L), or generators  (G). The power Pi injected at
each node is positive for generators and negative for loads, and
the maximum power injected is Pi

max . The transmission line
connecting nodes i and j has power flow Fij, maximum power
flow Fij

max , and the impedance of the line zi j.  There

are N N NN G L= +  total nodes and Nl lines, where NG is the
number of generators and NL is the number of loads.



The blackout model is based on the standard DC power
flow equation,

F AP= (A2-1)

where F is a vector whose NL components are the power flows
through the lines, Fij, P is a vector whose NN–1 components are
the power of each node, Pi, with the exception of the reference
generator, P0, and A  is a constant matrix. The reference
generator power is not included in the vector P  to avoid
singularity of A as a consequence of the overall power balance.

The input power demands are either specified
deterministically or as an average value plus some random
fluctuation around the average value. The random fluctuation is
applied to either each individual load or to “regional” groups of
load nodes.

The generator power dispatch is solved using standard LP
methods.  Using the input power demand, we solve the power
flow equations (A2-1), with the condition of minimizing the
following cost function:

Cost = ( ) − ( )
∈ ∈
∑ ∑P t W P ti
i G

j
j L

(A2-2)

We assume that all generators run at the same cost and all loads
have the same priority to be served. However, we enforce a
high cost for load shed by setting W = 100. This minimization
is done with the following constraints:
1) Generator power 0 ≤ ≤ ∈P P i Gi i

max

2) Load power P j Lj ≤ ∈0

3) Power flows F Fij ij≤ max

4) Power balance Pi
i G L∈ ∪
∑ = 0

This linear programming problem is numerically solved using
the simplex method.

 The OPA model is characterized by two intrinsic time
scales. There is a slow time scale, of the order of days to years,
over which load power demand slowly increases and the
network is upgraded in engineering responses to blackouts.
There is also a fast time scale, of the order of minutes to hours,
over which cascading overloads or outages may lead to
blackout.

The slow dynamics model the growth of the demand and
response to the blackout by upgrades in the grid transmission
capability. The slow dynamics is carried out by a simple set of
rules. At the beginning of day t, we apply the following rules:

1. Growth of the power demand.  All loads are multiplied by
a fixed parameter λ that represents the daily rate of
increase in electricity demand. On the basis of past
electricity consumption, we estimate that λ= 1.00005. This
value corresponds to a yearly rate of 1.8%.

P t P t i Li i( ) = −( ) ∋λ 1 for (A2-3)

2 .  Power transmission grid improvement.  We assume a
gradual improvement in the transmission capacity of the
grid in response to the outages and blackouts.  This
improvement is implemented through an increase of Fij

max

for the lines that have overload during a blackout. That is,

F t F tij ij
max max( ) = −( )µ 1 (A2-4)

if the line ij overloads during a blackout.  We take µ to be a
constant; µ is an important control parameter in the model.

3 .  Maximum generator power increase. ∆P is the total
maximum generation minus the total load power demand
Pdemand and ∆P/Pdemand is the generator capacity margin.
The maximum generation is increased in response to the
load demand as follows [Carreras 02].  When ∆P/Pdemand is
below a threshold value, we choose a generator at random
until a generator is found that has incident lines with the
sum of power flow line limits 20% larger than the
maximum generator power.  Then the maximum power at
that generator is increased by an amount κPdemand/NG,
where κ is a constant that is a few percent.  This process is

repeated until ∆P/Pdemand is above its threshold value.

4 .  Daily power fluctuations.  To represent the daily local
fluctuations on power demand, all load powers are
multiplied by a random number r, such that 2 − ≤ ≤γ γr ,
with 0 2≤ ≤γ .

5. Initial random line outage. Lines are outaged with a fixed
probability.  (Line outages are implemented by multiplying
line impedance by a large number and dividing the line
flow limit Fij

max  by another large number. In the present

calculations, these numbers are of the order of 1000.)

After applying these rules to the network parameters, we look
for a solution of the power flow problem using linear
programming. In solving the power dispatch problem for low
load power demands, the initial conditions are chosen in such a
way that a feasible solution of the linear programming problem
exists.  That is, the initial conditions yield a solution without
line overloads and without power shed.  Increases in the
average load powers and random load fluctuations can cause a
solution of the linear programming with line overloads or
requires load power to be shed. At this point, a cascading event
may be triggered.

A cascading overload may start if one or more lines are
overloaded in the solution of the linear programming problem.
We consider a line overloaded if the power flow through this
line is within 1% of Fij

max . At this point, we assume that there

is a probability p2 that an overloaded line will suffer an outage.
If an overloaded line outages, a new solution is calculated. This
process can require multiple iterations and continues until a
solution is found with no more line outages.

This fast dynamics model does not attempt to capture the
intricate details of particular blackouts, which may have a large



variety of complicated interacting processes also involving, for
example, protection systems, dynamics and human factors.
However, the fast dynamics model does represent cascading
overloads and outages that are consistent with some basic
network and operational constraints.
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